On Codes from Norm-Trace Curves

نویسنده

  • Olav Geil
چکیده

The main results of this paper are derived by using only simple Gröbner basis techniques. We present a new construction of evaluation codes from MiuraKamiya curves Cab. We estimate the minimum distance of the codes and estimate the minimum distance of a class of related one-point geometric Goppa codes. With respect to these estimates the new codes perform at least as well as the related geometric Goppa codes. In particular we consider codes from norm-trace curves. We show that our estimates give actually the true minimum distance of these codes. The new codes from norm-trace curves perform rather well. In many cases much better than the corresponding geometric Goppa codes. It turns out that an alternative description of the new codes from norm-trace curves can be made by using Høholdt et al.’s construction of improved dual codes ([11]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the duals of geometric Goppa codes from norm-trace curves

In this paper we study the dual codes of a wide family of evaluation codes on norm-trace curves. We explicitly find out their minimum distance and give a lower bound for the number of their minimum-weight codewords. A general geometric approach is performed and applied to study in particular the dual codes of onepoint and two-point codes arising from norm-trace curves through Goppa’s constructi...

متن کامل

Two-Point Codes on Norm-Trace Curves

We determine the Weierstrass semigroup of a pair of rational points on Norm-Trace curves. We use this semigroup to improve the lower bound on the minimum distance of two-point algebraic geometry codes arising from these curves.

متن کامل

Gröbner basis for norm-trace codes

Heegard, Little and Saints worked out a Gröbner basis algorithm for Hermitian codes. Here we extend such a result for codes on Norm-Trace curves.

متن کامل

Higher Hamming weights for locally recoverable codes on algebraic curves

We study the locally recoverable codes on algebraic curves. In the first part of this article, we provide a bound of generalized Hamming weight of these codes. Whereas in the second part, we propose a new family of algebraic geometric LRC codes, that are LRC codes from Norm-Trace curve. Finally, using some properties of Hermitian codes, we improve the bounds of distance proposed in [1] for some...

متن کامل

Explicit bases for Riemann-Roch spaces of the extended norm-trace function field, with applications AG codes and Weierstrass semigroups

The extended norm-trace function field is a generalization of the Hermitian and norm-trace function fields which are of importance in coding theory. In this paper, we provide explicit bases for certain Riemann-Roch spaces on the extended norm-trace function field. These bases provide explicit generator and parity check matrices for algebraic geometry codes CL ( D, aP∞ + ∑ β∈B aβP0β ) on the ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008